
Is a community state reachable, and why?
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Abstract

Deterministic models have difficulties to take into account stochasticity during commu-
nity assembly. As a tool to circumvent this problem, we present a qualitative discrete-
event model, where consequences of interspecific interactions are described as rules.
This model provides a map of all possible future dynamics for a given system, which al-
lows to exhaustively describe the possible pathways during an assembly process. Such a
description does not rely on species traits details and is insensitive to stochastic effects.
This allows to show that subsets of species are sometimes impossible to reach starting
from larger sets of species, and therefore to question the reachability of community
states during the system’s dynamics. Applying the model to an experimental dataset
studying the collapse of protist communities, we obtain a very good theory-experiment
agreement. We finally discuss what the notion of reachability can bring to community
assembly.
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1 Introduction

Ecological communities are complex and subject to stochastic behaviour, which makes
them very difficult to model. A common approach is to use systems of differential
equations and assume that stochastic behaviour manifests as fluctuations around the
equilibrium (Lotka, 1925; Volterra, 1926; Chesson, 2000). However, real ecological
communities commonly lose and gain species, leading to out-of-equilibrium behaviour
in which stochasticity and historical contingency play important roles (Fukami, 2015;
DeMalach et al., 2021). Deterministic models can predict possible stable states, but
their limitations far away from equilibrium hinder their ability to describe shifts between
these states.

These difficulties are particularly striking for studying community assembly, that
is how communities form through successive invasions and species loss. The order of
invasion sequences as well as their timing and the number of invaders can lead to very
different final communities (Drake, 1991) ; all of these parameters are random in na-
ture and make the study and modelling of assembly process particularly challenging
(Drake et al., 2012; Song et al., 2021). Modelling efforts in this field led to draw assem-
bly graphs, whose nodes are the system’s equilibrium points and edges are transitions
between them caused by invasions (Capitán et al., 2009; Serván & Allesina, 2021).
However, issues over the computation of assembly graphs, as well as more conceptual
questions such as the ecological importance of transient states, remain open to debate
(Fukami & Nakajima, 2011). Moreover, these models still lack experimental validation.

This paper aims to provide a family of models able to describe the long-term dy-
namics of a community while taking into account its possible stochasticity. Although a
quantitative model able to provide probabilistic predictions on the community compo-
sition at a future date might sound desirable, the practical feasibility of such a model is
unclear due to the large computational power required. Furthermore, the large number
of experimental replicates necessary to measure probability distributions is usually un-
workable, making such a model extremely difficult to validate. We therefore choose to
model communities qualitatively, considering only the presence or absence of species.
Although not so common, such models have been present for a long time in community
ecology (Luh & Pimm, 1993), to address questions such as the cascading extinctions
caused by removing particular species from a trophic network (Srinivasan et al., 2007)
or the effects of ecosystem engineering on community assembly (Yeakel et al., 2020).

Since species can appear or disappear, the community composition at a given time
is considered as a subset of a possible global species pool, corresponding for example to
species that are regionally present (Fukami, 2015). Based on the interaction network of
the pool, one can write down a set of logical rules describing how these interactions can
affect the community composition and which events (e.g. extinctions or invasions) they
can cause (Gaucherel & Pommereau, 2019; Veloz, 2020; Mao et al., 2021). The subset
of species present at a given time within the system then determines which of these
rules may or not be applied, and which composition changes they would cause to the
system - and therefore, which new species sets can follow. Applying this process to each
possible species combination allows to draw an exhaustive map of successive possible
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species subsets. The model does not provide information on whether a future subset
is more or less likely than an other one: it discriminates between which are possible
and which are not - or, put differently, it tells which subsets may be reached starting
from a given one as well as the possible pathways, regardless from traits, abundances
or stochastic fluctuations.

Such models have already been successfully used in biology to describe reaction
networks, which present similar challenges of complexity and stochasticity (Chabrier &
Fages, 2003; Wang et al., 2012). Applying them to ecological systems seems promising
and possibly very powerful, but it requires experimental validation. Datasets suitable
to do so are rare, as it requires long-term tracking of a community that gains and/or
loses species as well as enough replicates to explore possibly branching pathways in
community composition. We test this new approach on previously-unpublished data,
taken from an experiment on protist species (Weatherby et al., 1998). This experiment
is unique, as far as we know, in being the only replicated analysis which systematically
explores the fate of all possible communities that can be built from a pool of, in this
case, six species (i.e. a powerset of 26 − 1 = 63 communities in total). The experiment
was originally done in order to find all the persistent sets of species in the powerset
(Weatherby et al., 1998), to first examine the invasibility of these sets (Law et al.,
2000), and then use this information to map the possible assembly pathways for the
entire system (Warren et al., 2003). Data were recorded from monthly censuses of the
replicate communities, documenting the changes in species composition as communities
moved along their pathways to the final persistent communities. These time series
contain useful information about the order in which species were lost, including random
variation across replicates, on which the power of rule-based models can be assessed.
We use this experiment to test and validate our proposed approach, and to demonstrate
how it can improve our understanding of long-term community dynamics and assembly.

2 Materials and methods

2.1 The experiment

We summarize here the experiment fully described in (Weatherby et al., 1998), from
which the data we used are derived. Experimental communities were constructed from
combinations of six species of protists plus a mixed bacterial flora. Protist species
were chosen to exhibit a range of sizes and trophic strategies, and on the basis that
they were all able to persist when grown under the same environmental and nutrient
medium conditions in the laboratory. The trophic relationships of these species based
on prior information of their feeding habits allow drawing the trophic network under
study (Fig. 1). Before the experiments started all species were kept in laboratory stock
cultures using a nutrient regime similar to that used in the experiments, while predator
populations Amoeba proteus and Euplotes patella were fed on Tetrahymena pyriformis.
Hereafter, we will refer to each species by the initial letter of the genus name: A, B, P,
E, C or T in the community notations (the ordering of species names is according to
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their size).

Each of the 63 combinations of protist species was replicated six times over the
whole experiment (378 microcosms in total). For each combination, approximately
100 individuals of each species were introduced in the microcosms, with a mixture of
bacteria. Microcosms were sampled on day 17, and then every 28 days until specified
stopping criteria were reached. These were either: (i) species composition was un-
changed for three successive samples; (ii) only one species known to be able to persist
alone remained; (iii) only one species known not to be able to persist alone remained;
(iv) all species were extinct. In the original experiment, most (93%) microcosms had
met one of these criteria by 101 days, and the composition at this point was taken
as the ‘final’ state for the purposes of the analyses in Weatherby (1998). However,
here we make use of the full time series information to examine the pathways of the
replicate systems to inform and validate the model. These time series data consist of
information from monthly samples of every microcosm, which involved systematically
scanning the entire microcosm, in situ, under 20-30 times magnification and recording
the presence/absence of each species, along with an estimate of abundances. In this
article, we only use the presence/absence data.

While the majority of the experiments were reproducible, some were not. An ex-
ample of the results for such an experiment are pathways starting with species A,P,T
(Table 1). The lack of reproducibility between replicates is here striking: neither the
final result, nor the pathways, nor the timing, are consistent. In the complete data set,
at least 32 out of the 63 experiments displayed multiple different final compositions
and/or pathways. Such variability in the outcomes of experiments is not surprising for
ecological systems, even in well-controlled conditions, and better understanding this
variability is an active research topic (Goldford et al., 2018). Here, we provide an ap-
propriate model to describe such behaviour, and we will illustrate our approach with a
toy-model using this APT subsystem.

Start day 14 42 70 98 126 154 182 210 238 266
APT APT AT AT AT AT A –
APT APT AT AT T
APT APT APT AP A A –
APT APT APT APT AP AP AP AP A A –
APT APT APT APT AT AT AT A –
APT APT A A A –

Table 1: Time evolution of the community composition for each replicate of the APT
experiment. “–” corresponds to no species left (and the corresponding replicate was
then terminated). Replicate 2 was terminated once T was left alone as it is known to
survive arbitrarily long by feeding on bacteria.
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2.2 A toy-model for our approach

Similar to the approaches used in (Luh & Pimm, 1993; Law & Morton, 1996; Capitán
et al., 2009; Campbell et al., 2011), we describe the system without considering pop-
ulation abundances. We define the community state as the set of species present in
the system. For example, if both A and P are present (and thus B,E,C,T absent),
the state of the system will be denoted {A,P}. The interactions between species are
then translated as rules, describing how each species could affect another one in a way
that changes the community composition. A rule describes an event that can happen
to the community and change its composition. It contains the conditions necessary
for this event to happen and its consequences on community composition, written as
conditions → consequences. For example, trophic relation between populations A and
P (predation of A on P) can lead to two events: A can drive P to extinction, and A
can go extinct if P is absent (assuming here that no other prey species is present).
Denoting by + (−) the species that are present (absent), the first rule can be written
“A+, P+ → P−”: if A and P are both present (+), then P can become absent (−).
For the sake of concision, this rule is rewritten simply as A+ → P−. Indeed, if P is
already absent from the system, applying the rule will not change anything (a rigorous
justification for this writing choice is found in (Gaucherel & Pommereau, 2019)). The
rule associated to the second event (starvation of A) is then “A+, P− → A−”, simpli-
fied into P− → A−. We do not provide probabilities for the events; we are interested
in exhaustively describing what can happen, and whether these changes happen or not
will depend on the details of traits, abundances, or contexts.

Once the rules describing what can happen to the community are formalized, it is
possible to identify for each possible state which rules are enabled and which state they
lead to. This allows computation of the graph made up of all states and all transitions
between them, hereafter called state space. This graph is similar to the “assembly
graph” representation which is common in community assembly (Law & Morton, 1996;
Capitán et al., 2009; Serván & Allesina, 2021), except that our model does not consider
which states might or might not be stable: we draw all possible states and all transitions
between them.

We apply this model to the experiment containing only species A, P and T (Fig.
2). Comparing the predicted pathways with the results of table 1 displays a remarkable
agreement: all transitions between states observed in the experiments are predicted on
the graph, and all transitions predicted on the graph are observed in the experiments.
This model, despite its simplicity, describes successfully the possible transitions and
pathways between the possible community states, based solely on the nature of inter-
specific interactions. Interestingly, the state space is not a connected graph: this implies
that state {P} can never be reached when all three species are joined together, regard-
less the initial species abundances of the system or stochasticity. This (un)reachability
property is one of the central conclusions of this work and will be discussed in more
details below. The transition from {P, T} to {P} is not observed in table 1 as {P, T}
cannot be reached from {A,P, T} ; it has however been observed in other sets of ex-
periments.
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2.3 Model for the full set of experiments

To model the complete set of experiments, we first formalize as rules the possible
consequences of interactions between species at the scale of the community. Here,
species can only go extinct, and defining rules therefore corresponds to determining the
conditions in which they can disappear. We identified three types of interactions in this
species community:

• Predation. The first consequence of such a relationship is that the predator (pop-
ulation) may drive its prey (populations) to extinction. The second one is that
the predator can go extinct if it has no more prey. The predation of a species Pr
upon prey N will therefore be written as two rules: Pr+ → N− and N− → Pr−.
If it has two prey N1 and N2, we will assume that the predator can disappear
only if none of its prey is there, and there will be three rules instead of four:
Pr+ → N1−, Pr+ → N2− and N1−, N2− → Pr−.

• The system described in (Weatherby et al., 1998) displayed a second kind of
predation, where the prey population can be unable to sustain the population of
the predator for a number of generations (Fig. 1). This means that this kind of
prey should not be considered when determining whether the predator can starve
or not; however, the predator might still be able to drive them to extinction. We
chose to describe it as a secondary predation, meaning that the predator will go
towards its “preferred” prey first. Therefore, it can drive the “secondary” ones to
extinction if the preferred ones are absent. With a secondary predation interaction
upon Ns to the system, we need to add the rule Pr+, N1−, N2− → Ns−.

• Competition. Its consequences are simple: one of the competitors can be excluded.
The competition between two species S1 and S2 is therefore written as two rules:
S1+ → S2− and S2+ → S1−. If the competition is strongly unbalanced and one
of the species is the dominant competitor in all contexts, only one of these rules
will be used.

At this stage, a first attempt to model the community of the experiment set would
be to derive the rules directly from the trophic network drawn in (Weatherby et al.,
1998) (Fig. 1). However, this attempt gave disappointing results, because in many
experiments starting with several basal species one of them went extinct even in the
absence of predators. It suggests that competition between species must be taken into
account in the model. We therefore chose to infer the whole interaction network from
the outcomes of the two-species experiments (Fig. 3). If a prey population is able
to sustain its predator’s population for a number of generations, the predator should
never disappear during the experiments involving only the predator and its prey as long
as the prey is present. If not, the predator might go extinct before the prey in some
replicates. Similarly, the competition between basal species can be deduced from the
result of pairwise experiments. We also observed in the data that species C sometimes
disappeared alone, for unclear reasons, and therefore added the rule C+ → C−. The
rules that subsequently became redundant were then removed; for example B+ → C−
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(predation of B upon C) was removed because C+ → C− already allows C to disappear
in every situation where B+ → C− can be applied. Although both rules have different
meanings, keeping only C+ → C− leads to the same computation result. Similarly, E
has been found to have no species on which it can reliably feed upon on the long term
and can therefore go extinct in any situation, and the rule corresponding to secondary
predation of A upon E was removed because of its redundancy with E+ → E− (Fig.
3).

3 Results

3.1 Complete state space and model validation

Once the community interaction network and its associated ruleset are defined (Fig.
3), the state space is computed from these rules (Fig. 4). In the experiments, species
disappear one by one and never reappear. There are therefore

∑6
k=1 k

(
6
k

)
= 6× 26−1 =

192 theoretically possible transitions between the 26 = 64 states (six transitions starting
from the state with six species, five transitions starting from each of the

(
6
5

)
states

with five species, etc). Out of these 192 transitions, 135 are predicted by the model,
among which 71 (53%) are observed. No unpredicted transition is observed, which is a
necessary condition for validating the model (Saadatpour & Albert, 2013).

It is expected that some of the predicted transitions are never observed, for two
reasons. First, transitions with a very low probability may be unobserved due to the
finite number of replicates. In particular, the states with many initial species always
collapse towards states with less species; transitions starting from the latter are therefore
observed more often. For example, the state {A,B} was observed 77 times. Starting
from this state, the transition to {B} was observed 73 times and the transition to
{A} only three times. Such an infrequent transition would probably not have been
observed if {A,B} had been observed only six times (like {A,B, P,E, T} for example).
Secondly, some transitions were too fast to be visible within the data. For example, all
replicates starting from all 6 species had only four species left at the first census, and
the transitions to 5-species states were therefore not observed even if they must have
happened (assuming that no two species disappeared at the same time). Finally, the
model is parameter-free and ignores details on abundances and species traits: transitions
are predicted if they can occur in some conditions, while these conditions might never
have been reached during the experiments. The model over-predicts possible pathways
on purpose, in order to exhaustively predict what may happen.

This choice of a broader (qualitative and discrete) prediction does not prevent pro-
viding information on the system’s dynamics. However, it becomes crucial to know
to what extent we over-predict and to ensure that all observed transitions were not
predicted by chance due to a too broad prediction. For this purpose, we used a null-
hypothesis test based on a neutral (random) model. As the transitions from two to one
or one to zero species are used to calibrate the model, we considered only transitions

8



starting from three or more species to validate it.

In the experiment,
∑6

k=3 k
(
6
k

)
= 156 of these transitions are possible. In the com-

plete community model, 111 of these 156 possible transitions are predicted, among
which 51 (46%) are observed in the experiment. If 111 transitions were randomly pre-
dicted out of the 156 (corresponding to the case where the model would provide no
information), the probability to observe only predicted transitions would therefore be(
111
51

)
/
(
156
51

)
= 3 × 10−10 (also equal to the probability that 51 transitions drawn ran-

domly out of 156 are all predicted). This allows us to be confident in the capacity of
our model to indeed predict all possible pathways of the community.

3.2 Are there stable states?

One could hope to use this model to predict stable states from the community, looking
for the states from which no transition is possible (called “deadlocks” (Gaucherel &
Pommereau, 2019)). However, in our complete community model there is only one
such state containing more than a single species ({B,P}, in purple on Fig. 3). While
it might be surprising at first sight, this is indeed what is observed within the data
(see supplementary S1). Some states collapsed quickly and were never observed at two
successive census while others usually lasted for dozens of generations, but all states
but {B,P} containing two or more species decayed at some point. The reasons for
this behaviour are unclear, possibly a lack of control upon experimental conditions or
evolutionary effects during these long-term experiments. However, as our model does
not depend on exact parameters and traits, it should be robust to these effects and
indeed appears to be. It also illustrates that this discrete-event model does not make
any assumption on timescales of processes and events, nor on how long the system will
stay in a given state. The deadlocks in this model are in fact highly different in nature
from the stable states commonly studied in community ecology. Indeed, stable states
usually correspond to an equilibrium between processes and therefore to a restricted
part of the phase space. As our model should remain valid regardless from abundances
and parameters, deadlocks rather correspond to an absence of processes allowing to
leave the state.

3.3 Reachability of the states

Strikingly, the state space is disconnected (Fig. 4). This implies that all states cannot
be reached from the community containing all species. This includes stable states:
{B,P} is highly stable but cannot be reached from {A,B, P,E,C, T}. As the model
is parameter-free, this impossibility to go from a given state to another should remain
true for any parameter set, as long as the topology of the system – corresponding to the
set of rules – remains unchanged (see Discussion). This result should also be robust to
stochasticity: parameter changes and stochasticity would affect which exact pathway
is taken by the system, but this pathway should stay within the set of the computed
possible transitions.
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This non-reachability property can be understood by considering species A and P,
two key populations of this community. Species A is an apex predator while P, a
bacterivorous species, is able to sustain itself for an arbitrarily long duration. The only
way A can go extinct is therefore its starvation in the absence of P, and P will thus
necessarily disappear before A. States where P is present but A is absent are therefore
unreachable from states where both are present. On the other hand, no species other
than A is able to drive P to extinction. Hence, a state without P cannot be reached
from a state with P but without A. As simple as this explanation is, such a property is
not visible without drawing the community’s state space with our model.

Computer sciences provide a range of methods for automatically analysing reach-
ability. It is possible to group states into “structures” sharing the same topological
properties in the state space (e.g. same possible final outcomes (Bérenguier et al.,
2013; Gaucherel & Pommereau, 2019)). In the state space (Fig. 4), states leading to
the same endpoints have been plotted with the same color. They can be “merged”
to provide a convenient state space which summarizes the overall dynamics and dis-
plays all states belonging to the same structure as a single super-node (Fig. 3 inset).
This highlights key transitions having causal consequences in the overall dynamics and
causing shifts from a structure to another one (Gaucherel et al., 2020). For example,
starting from {A,B,E,C, T} (dark blue, second line on figure 3), losing species A im-
plies that the sole possible final state of the community is {B}, regardless of future
dynamics details (as state {B,E,C, T} belongs to the yellow structure). Conversely,
losing species C or E would have fewer consequences, as it has no impact on the long-
term reachable states: both states {A,B,E, T} and {A,B,C, T} belong to the same
topological structure as {A,B,E,C, T}. This method is particularly useful for dealing
with large species communities or ecosystems, where the state space is impossible to
plot directly because the number of states, 2n, increases exponentially with the number
of variables n in the system (Cosme et al., 2022).

3.4 Predicting the consequences of invasions

Although our model mainly describes the possible collapses of communities, it can also
provide insights on invasion consequences, by considering invasion as a one-time event
that may happen starting from a given state. Partitioning the state space into its
topological structures is especially useful here. Depending on which species invade,
invasions can be sorted into three categories (Fig. 5):

• The consequence of an invasion can be weak, when the post-invasion state belongs
to the same structure than the one containing the initial state. In this case, the
invaded state might collapse back towards the initial state, or follow the same
long-term future than the one of the initial state. For example, invasion of state
{B, T} by species C pushes the community into {B,C, T}, which can collapse
back to {B, T} and finally reach the same final endpoint {B}.

• The consequence of an invasion can be an irreversible shift when it leads to a
state that cannot come back to the initial state nor reach similar endpoints. For
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example, invasion of {B, T} by P leads to state {B,P, T}, which always ultimately
leads to {B,P}.

• Finally, the consequences can be indeterminate if the invaded state can either
come back to the initial state or collapse to states belonging to other structures.
For example, invasion of state {B, T} by A leads to {A,B, T} which can collapse
back to {B, T}, but also towards {A, T}, leading to an irreversible shift for the
future of the community.

These three invasions of state {B, T} have been experimentally proven possible in (War-
ren et al., 2003), although the subsequent long-term dynamics was not studied.

4 Discussion

The study of long-term dynamics of communities and community assembly requires
models that avoid sinking into unmanageable complexity, and able of dealing with the
unavoidable stochasticity at this scale. Here, we proposed a simple qualitative frame-
work based on a rule-based and discrete-event formalism. The state of the studied
community is defined by species which are present in it, then associated with possible
changes in community composition caused by interactions within the system. Such
models provide an exhaustive map (the state space) of possible pathways for the com-
munity or ecosystem (Gaucherel & Pommereau, 2019; Cosme et al., 2022). Although
this modelling framework might seem rudimentary at first sight, we applied it to an
experiment studying the long-term dynamics of protist communities (Weatherby et al.,
1998) and demonstrated its good capacity to describe the experiments, with an excel-
lent agreement between model and data. The model is not predicting the exact final
state that a specific community will end up in, but it allows to discriminate between
which states are reachable and which are not. Focusing on reachability allows to bet-
ter understand the dynamics of an ecological system while taking stochasticity into
account, and without relying on unavailable information and parameters. This model
also automatically sorts the system states and pathways depending on their reachable
endpoints and provides a synthesized map of all possible fates. Finally, it also allows
some insights into the possible consequences of a given invasion event, based on the
options for the system to come back to its initial state and the possible impact on the
system’s long-term changes.

4.1 Consequences for community assembly

Our approach appears useful for experiments in community assembly. The “top-down”
experiments, in which all species are put together before letting the system evolve (Gold-
ford et al., 2018; Bittleston et al., 2020), are often used as an easier-to-perform alterna-
tive to “bottom-up” experiments, in which species are added one by one into the system.
Hence, a better understanding of the relationship between both approaches would have
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a substantial interest (Serván & Allesina, 2021). Studying reachability provides in-
sights about situations where both directions are not equivalent. For example, the
(highly stable) state {B,P} cannot be reached from the initial state {A,B, P,E,C, T},
while an other set of experiments with the same species showed that it could be built
through invasion of state {B} by species P and reversely (Warren et al., 2003). This is
a clear demonstration of a case where top-down and bottom-up assemblies differ. Also,
we would like to point out that assembly models often focus on invasions as the main
source of uncertainty while the collapse of unstable states following invasions is assumed
deterministic; here we show that this collapse is also far from trivial and should not be
neglected.

Community assembly is sometimes studied using “assembly graphs” (Law &Morton,
1993; Capitán et al., 2009; Serván & Allesina, 2021). This approach considers only
stable states and transitions between them, howether it has been demonstrated that
stable endpoints of community assembly are not necessarily representative of transient
states and that transient states have no reason to be short-lived enough to be negligible
(Fukami & Nakajima, 2011). In the set of experiments studied here, only one state
containing more than a single species was observed as truly persistent, all the other
states losing species at some point (see Results). Like in (Fukami & Nakajima, 2011),
it seems that a large part of the interesting dynamics lies outside from stable states. It
should however be possible to combine both approaches, by using differential equations
to identify which states can be stable and our rule-based model to identify possible
transitions.

4.2 A qualitative model

Using a qualitative framework comes with many advantages despite removing the op-
portunity to provide precise predictions on a given community’s future. Firstly, on
the side of experimental and empirical works, it allows writing meaningful models even
in the absence of exhaustive measurements of all parameters, often tedious if not im-
practicable. For example, in the case of the Weatherby 1998 experiments, the detailed
composition of the bacteria on which protists are fed was unknown, while it has been
recently demonstrated that basal resources plays a crucial role in assembly (Goldford
et al., 2018; Dal Bello et al., 2021). Here, while this composition may play a role in
the detailed dynamics of the microcosms, it should not change what can happen: it
may affect what will happen, i.e. which exact pathways will be followed within the
possible ones. The computed state space provides here a canvas showing what is pos-
sible and what is not, regardless of parameter values. For this reason, the model could
also be useful for experimental design, as it can provide with a few modelling efforts
an a priori description of possible outcomes without requiring many preliminary mea-
surements. Secondly, on the theoretical side, a central advantage of this parameter-free
model is that its predictions are highly robust. Indeed, they should be valid for any set
of parameters as long as the topology of the ecological network remains identical (same
interactions). It should also be robust to most higher order interactions, as long as
they belong to trait-mediated indirect interactions (Golubski et al., 2016; Levine et al.,
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2017): since our model is designed to describe all possible transitions regardless from
trait values, higher-order interactions that affect traits should not add new transitions.
Instead of exploring various sets of parameters, the model encompasses all possible
values in one single result and provides a “universal” canvas within which the detailed
dynamics occur. This can be compared to a recent paper (Yeakel et al., 2020), in which
the authors randomly draw the changes in a species community based on logical rules.
While their approach would correspond to performing a weighted random walk in the
state space, our method provides a tool to directly study the graph within which the
dynamics occur as a whole, which provides complementary information.

Lastly, this parameter-free framework and these models are fast to compute: a few
seconds only are needed for the graphs presented here, and a few tens of minutes for
huge models containing around a hundred variables without using a supercomputer
(Cosme et al., 2022). The work realized on biochemical networks even demonstrated
the ability to handle networks of more than 500 variables (each species corresponds to
one variable in our case) (Chabrier & Fages, 2003). Visualizing the corresponding state
spaces becomes rapidly impossible as its size increases exponentially with the number
of variables, but many tools do exist in computer sciences for analyzing such models.
For example, methods derived from model checking (Clarke et al., 2018) could be im-
plemented to efficiently compute the reachable states and question various dynamical
properties.

4.3 Conclusion

We demonstrated that a simple and qualitative model, based on a translation of the
interaction network as a set of logical rules, could effectively provide information on
the long-term dynamics of an ecological community. Choosing a qualitative model and
focusing on the essence of interactions rather than on their details provides a global view
that is unaffected by the stochastic variations inherent to ecological systems. We hope
and believe that this approach can provide new insights on the long-term dynamics of
communities and community assembly that would be unattainable with quantitative
models.
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Figure 1: Trophic network of the experimental system with species sizes indicated, as
displayed in (Law et al., 2000). Solid lines are feeding links capable of sustaining a
species for a number of generations; broken lines are feeding links unable to do so.
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Figure 2: Illustration of our model with a subset of the species present in the experi-
ments: A, P and T. a) Interaction network of the species. A is a predator for P and
T (blue arrows), but the population of T alone cannot sustain the population of A for
many generations (blue dashed). P and T compete together (red arrow), but P is al-
ways the dominant competitor. This network is inferred from the experiments involving
pairs of species (see section 3). b) List of the rules used to describe the system (see
main text). c) State space of the system. The rules shifting from one state to another
one are labelled on edges. As the system is isolated, invasions are impossible and the
graph is acyclic. States that have the same possible final outcome (called a deadlock)
are displayed with the same color; states with several possible outcomes are drawn as
diamonds while square states have only one possible final outcome.
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Figure 3: Trophic network deduced from the pairwise experiments, with the associated
ruleset (to be compared to Fig. 1). Blue arrows correspond to predation interaction
(dashed if the prey cannot sustain the predator’s population alone), red arrows to
competition interactions. Species with a magenta circle are observed to be able to
survive alone, by feeding on bacteria. We chose to describe the predation of A upon P
as preferential, as A can sustain itself only on P: we assume that it will not drive other
species to extinction as long as P is present.
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Figure 4: Complete graph of the 64 possible states for the system, with the transitions
predicted by the model (defined in Fig. 3). Black (grey) arrows correspond to observed
(unobserved) transitions in the experiments. States drawn with the same color have the
same possible final states. Square states have only one possible final outcome; diamonds
several ones. Inset: schematic (“merged”) graph of the complete state space, where all
states with the same possible outcomes are merged into one super-node. Edges in this
merged graph indicate that there exist transitions predicted between some of the states
within super-nodes. Labels indicate which species are present in all the states of a
given super-node.
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Figure 5: Subset of the state space (Fig. 4) corresponding to the invasion of state
{B, T} by species C, A or P (blue dotted arrows). Starting from {B, T}, invasion by C
has a weak impact, invasion by P has a large and irreversible impact and invasion by
A has an indeterminate effect (see text).
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